e e

NASA TECHNICAL TRANSLATION NASA TT F-14,653

FJ\TU'J- f\Cf K;B,j)S\

THE BEHAVIOR OF PARALLEL AIR JETS

J. G. Edler v. Bohl

~ A - N73-15311
U THE BEHAVIOR OF _ .
(NASA-TY Fi;ugggg (Scientific Translation
PARAFLEL A L i $3.75 gnclas
service) 3% P 631252622
Translation of: '"Das Verhalten

paralleler Luftstrahlen," Ingenieur-
Archiv, Vol. 11, 1940, pp. 295 - 314,

ik
o
[
g
i

G i
L
;

NS,
N
\ipu

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546 JANUARY 1973

et



STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient’'s Catalog No.
; NASA TT F-14,653 i
f 4. Title and Subtitle 5. Gagﬁvﬁao%l}o’ 19, 1973

THE BEHAVIOR OF PARALLEL AIR JETS

6. Porforming Organization Code

7. Author(s) 8. Performing Orgonization Report No.

J. G. Edler v. Bohl .. 10. Work Unit No.
o : — _ 11. Contract or Grant No. . ’ L
) 9. Performing Organization Name and Address NASw-2483 T
T . SCITRAN [ e "{13. Type of Report ond Period Covered RS
- Box 5456 » T lati
AR Santa,Barbara CA_ 93108 : ranglation
o 12, onsonng Agency Nomo ond Address
o _ atlonai Keronautics and Space Administration
T Washington D.C. 20546 14. Sponsoring Agency Code

15. Supplementary Notes : ‘ - '
Translation of: "Das Verhalten paralleler Luftstrahlen," '

Ingenieur—Achiv, Vol. 11, 1940, pp. 295 - 314.

16. Abastroct '

'The flow behind three grids. having‘different opening sizes was- - - - o : v
studied to explain irregularities 1n the flow behind smoothing- grlds. . ”ﬁfﬁ);
A probe which could be callbrated in a free Jet mixing zone was developed. k

For the grids studled it appears that the instability observed occurs

more easily as lattlce rods of comstant width are placed closer together

ThlS phenomenon was followed up theoretically.

17. Key Words (Selected by Author(s)) ] 18, Distribution Stotement

Unclassified - Unlimited

19. Security Classif. (of this report) 20. Securit:: Classif. (of this page) | 21+ No. of Pages i 22. Price
Unclassified Unclassified 33 i3 7

s {2 ]




THE BEHAVIOR OF PARALLEL AIR JETS
J. G. Edler v. Bohl

ABSTRACT. The flow behind three grids having
different opening sizes was studied to explain
irregularities in the flow behind smoothing grids.
A probe which could be calibrated in a free jet
mixing zone was developed. For the grids studied
it appears that the instability observed occurs
more easily as lattice rods of constant width are
placed closer together. This phenomenon was
followed up theoretically.

Introduction

This work (1) is intended to explain the irregularities;whigﬁ;fi;

are Qbsép?ég in the flow behind the smoothing grids of blowers and
wind tunnels, aﬁﬁ‘whic@ persist there, in that several of the jets

produced in the’grid join together, working-against]

the smoothing out of the air stream. For simplicity, only the
plane flow produced by grids consisting of rods with parallel edges

is investigated. It was found, in fact, that under certain conditions

every pair of air jets combines. Now, because of its greater wave-
length, this irregularity persists in the flow longer than if the
jets had remained separate. This undesired phenomenon proves to

be dependent on the density of the grid, 1i. e., on the magnitude
of the ratio

A= obstructed area 4
channel cross section

s
"

Numbers in the margin indicate pagination in the original foreign
text.

(1) Gdttingen dissertation. Prof. Dr. L. Prandtl, reporter; Prof.
Dr. A. Betz, co-reporter.
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When % is small the jets passing through the grid remain parallel to
the long axis of the channel, but with large ; they become unstable
and attract each other so that they combine. The border between the
two cases lies between ﬁ = 0.37 and = 0.46. This is determined
from measurements behind several grids for which *%| is increased or
decreased by a change in the number of lattice bars. ThlS shows that
the flow behind a smoothlng grid will become lmore uheven the more
densely it is constructed; as long as a certain limiting value for the
density is exceeded. At small densities, of course, the smoothing
action which takes place due to the narrowing of cross section, would
be small. Therefore, - _the density must approach the limit for the

highest degree of smoothing.

Now, in order to obtain useful velocity measurements in the
partlcularly strong turbulent flow occurring in our grld measurements,
it was necessary to find a new probe which would prov1de a measure
of the static pressure in turbulent flow. The usual»p;obe types for
smooth flow fail as soon as the flow becomes strongly turbulent,
because here the flow direction varies considerably about a central
value. The cause of this failure can be found in the great
sensitivity to obliquely incident flow. G. Cordes (2) was able to
measure the static pressure from measurements with a small disk
probe and a "turbulence probe" which was intended to determine the
turbulent transverse flows perpendicular to the plane of the disk.

He was successful’ only\for weak turbulence. Following a suggestion
from Prof. Prandtl, Mustert Gy has used;ghprobe which makes use of
the fact that in flow around'a-c:ﬂlnder, ‘the position of the point
of boundary:leyei‘séparation depends on the strength of the turbulence.
By pressure measurements at three definite points of such a cylinder
used as a probe, Mustert was able to determine a measure for the
strength of turbulence of a non-laminar flow. In this work, the
probe is placed parallel to the edge generating the turbulence. This
av01ds a perturbing flow in the dead volume in the dlrectlon of the

(2) . Cordes, Ing.-Arch. 8(1937)page 245.
(3) Previously unpublished.



V\gylinder axis, which would falsify the pressure indications <4). /296
%%A dimensionless measure of the turbulence is derived from these

tpféssure indications and made dependent upon a similar expression

- containing the static pressure. In this way a calibration curve
“;Wa§§found through measurements in a free jet mixing zone. From _

this calibratien curve, the static pressure can.be determined with

some reliability in other turbulent flows.

It should be mentioned that the turbulences occurring behind
the bar grids used here are considerably stronger than those
observed in a free jet mixing zone, so that even total pressure
measurements with an ordinary pitot tube are no longer sufficient.
The angular range within which the flow direction changes continuously
due to turbulencegis far greater than the directional sensitivity
of a pitot tube. But fortunately, we were also able to overcome
these problems fairly well, as shown below. |

I. Experimental Part

1. The Test System

The air flow necessary for the measurements was generated by
a two-stage axial blower, a (Figure 1). The air drawn through the
lﬁzaﬁéliorf is led through a circular tube section, b, and a
‘transition section, c, which changes the circular cross section into
a rectangular one, and into a smoothing channel, d, which ig
60 cm high and 65 cm wide. The nozzle, e, of the blower decreases
the cross section to 32 cm high while the width remains the same.
A flow ‘straightener, £, 1is placed at the entrance of the smoothing
section. Following it are three screens, g1r 89 and g3- Likewise,

the transition section and the tubular section each contain one

(4)

Because of his experimental conditions, Mustert was compelled
to place the probe perpendiculer to the edge generating the
turbulence, so that he had to come to terms with the problem
just mentioned.
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Figure 1. The blower used.

smoothing screen, g, and gs.

Small pressure fluctuations were compensated by means of a
pressure regulator, h, according to Schrenk 5 , and larger ones
by controlling the rate of motor rotation with a shunt resistance.

The test section, i, consisted of a channel 100,cm long, with
the same cross section as the nozzle. An opening 82 cm long and 4 cm
wide was left in the top so that the probe, __ji could b€ introduced
and ‘moved ini the flow direction along a prismatic guide, k, and across
the flow direction by a rack and pinion drive, 1. The remaining

openings were closed with suitable pieces of‘@bod.

walls, with the inner wall being 12 cm shorter than the outer one,
and with the different grids fastened to the ends. The walls were

1.8 cm thick.

The horizontal grid bars consisted of strips 5 cm wide and 1.4
cm thick, with trapezoidal cross section. The wider sides were
turned toward the flow. Careful attention was paid to the beveling,
in order to get clean separation.iﬁiﬁéi§§?s were fastened with
countersunk bolts and nuts to two vertical strips, and these were

(5) 0. Schrenk, Ing.-Arch. 1(1930), page 350.

/ 297




Scrﬁﬂéd;to’éhe ends of the . inner chamnel walls., Behind this, profile
strips 6.5 cm wide were placed at both sides, gradually converting
the channel width down to the true test section width, ‘which is\

less by twice the thickness of the inmer channel wall, while avoiding

a step which would produce a separation.

Figure la shows the grid with the smallest J which was studied
(stable case). For all thiee grids studied, the bars were arranged so
that the widths of the jetsjadjacent to the upper and lower chanmel
walls, measured in the plane of the brid, were 2/3 the w1dth of]a
central jet. The _ fééébnlng\on which, this is based follows below.

B T
The corresponding values for /| were:

(I) 0.308
v (I1I) 0.462
(III) 0.615

1 _ v

’ §? (I) 0,308,
{ Nz EE;;;;;EE : © (1) 0,462,
i = | 1) .

)

-4 ‘ I I =
iCross section A-A —
" gz
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Figure la. Test system with grid'I Figure 1lb. Test system for

inserted. \ probe calibration.”

To calibrate the probe; the top of the channel was removed as

~ far as the nozzle. Instead of the grid, a board with a curved sheet

, e it
y ‘shaped as shown in Figure 1b was 1nserted, covering the jJapper half
? of the channel cross section at a widtW of 20 cm. The- statlc pressure

in the mixing zone of the jet passing through the cross section which

is reduced in thls manner can, with sufficient accuracy, be taken as

B %

2t



zero. According to Tollmienl(é).the static pressure ‘in the free

jet is about %% of the dynamié pressure.

The pressure, compared to the pressure prevailing in the test
room, was measured with an alcohol-filled vertical manometer according
to Prandtl. It was evaluated with consideration of the temperature

and barometer reading.

2. The Probes Used and the Measuring Process

A small tube of circular cross section and 2 mm diameter, with
a hole 0.2 mm in diameter\was used as a probe to determine the s%@tic
pressure and the total pressure (j in Figure 2). The hole wWas 6 mm
from the closed end of the tube. Flow was incident on the tube
perpendicular to its long axis. For the position just mentioned,
the deviation of the stream lines in the direction of this axis had
no effect on the pressure indications, as was shown by comparison
with a probe having its hold in the middle. It was held parallel
to the grid bars by a streamlined support, m. At its upper end is
a disk, n, graduated in degrees, which, by means of a thin steel
cable, o, connecting the two pulleys, provides for rotation of the
probe by about 360°. The pulley at the lower end of the support, p,
is designed so that the probe can be changed. The pressure is
carried from the probe through a short hose section, r, into a

brass tube, q, carried by the suppott.

Now the pressure readings from the probe were recorded as a
function of the angle of rotation for various degrees of turbulence
in the free jet mixing zone. Let the maximum pressure be designated
as a. As we shall see later, this is equal to the total pressure
only for very low turbulence. The minimum, which lies at 70°
(because of the symmetry of the pressure distrjbution, it makes no
difference which way the probe is rotated) can be called b.

On further rotation, we detect the separation of the bourndary layer

(6) . Tollmien, Z. angew. Math. Mech. 6(1926), page 468.
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by thg;suBSgggéﬁth£g§§gfe increase. The pressure at 115° is called c.

The curves of Figure 3 have been recorded at locations of different
strengths of turbulence behind grid I (4= 0.308). Here, it can clearly

]
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Figure 2. The two probes. Figure 3. Pressure readings from the

probe as a function of the
angle of rotation for
different strengths of
turbulence.

be seen how the separation occurs later and later with increasing
turbulence (curves t, to t4). The pressure increase becomes steadily
weaker. When t Dbecomes larger than 1.5, we enter a region inf‘ "t.;§:
which the eddies from the upper and lower edges of a grid bar strike
the probe, one from above and one from below, as a concentrated
pattern of eddies, so that curve tg in Figure 3 shows two stagnation
points at 0° and 130°. In this region, then, no useful results

could be obtained. As a measure of turbulence, we have selected



the expression used by Mustert:

In order to obtain a calibration curve for our probe to determine the
static pressure, we, like Mustert, plotted the ratio (a - pst)/(a - b)
versus t as the abscissa. Here a, b, and c¢ were obtained by

measurements in the free jet (See Figure 4).
/ 299

In order to determine whether the calibration curve obtained
in this manner is independent of the dynamic pressure and the
Reynolds number, measurements were made in the free jet mixing
zone at four different velocities. The velocities at the center
of the jet were |

27.5 m/s 20.3 m/s 13.6 m/s 10.2 m/s
The pressure, a, at a distance of 49 cm from the edge of the
nozzle is plotted in Figure 5 in mm alcohol. Measurements were
also made at the same velocities at distances of 26 cm, 36 cm,
and 60 cm from the nozzle edge. At low values of a the calibration
points scattered so severely that the calibration curve could not
be determined past t = 1.00.
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Figure 4. Calibration curve for calculation of the static pressure.
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In measurements behind the bar grids, two problems which
at first seemed insuperable were met: It appeared that the turbulence
produced by our grids was considerably stronger than that which was
observed in a free jet mixing zone, so that our calibration curve
would be good only for measurements at very great distance from the
grid. The second problem was in the determination of the total
pressure. A pitot tube, s, was attached to the support in such a
way that its opening was at the same position as the hole in our
probe (see Figure 2). 1In a flow for which the turbulence was not
greater than that in the mixing zone of a free jet, the pitot tube
indicated the total pressure with sufficient accuracy. But if we
enter a more strongly turbulent flow, the flow direction varies"
through a greater anglé'than the directional sensitivity of a pitot

tube allows, so that the measured pressures were too low.

In the following, only grid 1 is considered initially. For
and ¢ were measured for each[@éasUrFment point, and tﬁé total
pressure d was measured with the pitot tube. The t-values
produced with this profile were all on the calibration curve which
we plotted in the free jet, so that the static pressure here / 300

could be determined at each measurement point, as well as the
velocity. Measurements were now made in steps of a few centimeters
closer tp,the\grid, so that the t-values became steadily larger.
For constant Xx; these are distributed so that they are smallest
for y = 0 (jet center), and, conversely, greatest for y = + |
(center of the wake). They inéféaséfﬁn}approach to the grid.

Here

and h is the grid separation, measured from bar axis to bar axis.

Now a velogityfﬁfafiI§fW§§ selected which exhibits t-values
extending above the measured calibration curve at measurement points
lying in the vicinity of y = + al. In order to satisfy continuity,
the same average velocity U, must occur with this profile as with
a profile with larger x;.  As the velocity profiles for large x



take on rather exact cosine shapes (7) one can approximately determine
the position of the mean velocity by filling in the points where
measurements are missing according to a cosine law. Now our three
values a, b, and c¢ are interpolated for these points, and

the following value, from continuity:

(g - pge)/(a - b)

is plotted versus t 1in a new calibration curve. Here
E—Psr=“g‘(ﬂ

This curve is then improved in steps by complete calculation of
individual velocity profiles and supplementary checking of the

72 dy =Co né%_J

continuity

until it can finally be put in the form of Figure 6. For t<1.00,
other individual calibration points were obtained from measurements

at a large distance from the grid.
o

. 085 0% 0S5 10 105 1M 175 120 15 10 135 180 18 1%
85 ]
&
- 60 4 ]
ars -
om '/o.z:,-id.fm
oss ’//
/.z:,-il,é‘cm
060 ,/
o5 e 6o
) a5

Figure 6. Calibration curve for calculation of the dynamic pressure.

L (7) See Footnote 2, page 2. .. ...t
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The static pressure was.determined similarly. From.the
momentum law it follows that

+2I

@uL+Mdy~cons 78

if the small axial force ¢! is meglected (8). The momentum

transport through the lines y = + «\ vanishes for reasons of
symmetry. The value of the constant is determined from measurement
for large distanceg from the grid. Then, for smaller and smaller Xx;
“fh?NW???,Efif?P?e“-Pét, is»dgfg;m?ned from the momentum law and

the value of (a - pét)/(a - b) is plotted fof_E?e matching a, b,
-and — ¢ -~versus the corresponding -t. -The points obtained in this

way are plotted as @) in the calibration curve. The curve obtained

in this manner was improved by complete calculation of individual
pressure curves and repeated checking from the momentum law. Figure &4
shows the final form. As can be seen from the scattering of the / 301

‘calibration points, a small deviation from the curve obtained by
calibration in the free jet is without any great importance,
particularly because this also increases as t increases. From

the four different designations of the callDratlon points,we can

determine the a curve upon which we find ourselves.

I x
-2, d-a - .
fEbiad ,
49 V//l l
/!// |
@ 7:/ 7
. ;{ /Jb/ ;
. . %= . %
. /!/ 'V{o by !
ik pod |
'4}526 ) ;
. 1 -
L , E;
Y] 49. 7 7 32 15 72 15

Figure 7. Dependence of (g - a)/(a - b) and (d - a)/(a - b) upon
the measure of turbulence, t (obtained from experlmental
points with grid I,

(8) See Footnote 2, page 2.
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Finally, by subtracting the ordinates of our two calibration
curves, we obtain a relation between (g - a)/(a - b) and our
measure of turbulence, t, which provides us a determination of
the true total pressure g (Figure 7). 1In order to show the
deviation of the pressure indication d of the pitot tube from the
true total pressure, (d - a)/(a - b) is also.plotted versus ¢t
(e in Figure 7). There is severe scattering here, to be sure, but
it is no doubt relatled to the fact that with large t the flow
direction usually-diverges very strongly from parallelism with the
long axis of the channel. Only our probe, through zero point
determination, always remains adjusted in the flow direction,

while the pitot tube remains unchanged.

3. The Grid Measufements

-

Using the measuring method developed above, measurements were
made behind three grids. Their characteristic quantities h and 2|
can be determined from the following table:

*"""“*‘ h-.- ‘\g Cm) - ‘X)
eI 14.62 0.308
¢ I1 10.20 0.462

o III 7.90 0.615

G II and GIII were produced from G I by adding one more
grid bar for each, so that the ratio } was increased correspondingly
(Figure 8). All the grids were arranged so that no grid bar was
directly adjacent to the channel wall, but rather so that a gap
having a width equal to 2/3 of the space between the nearest edges
of the grid bars remained at the top and bottom. Experiments have
shown that it is undesirable to have a grid bar immediately adjacent
to the channel wall, because the dead space forming behind it
extendé too far into the flow as a perturbation. If one were to

12
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Figure 8. Schematic representation of the three grids.

dééiéaéé;iheAgépiWidth§significantly, then the jet passing through
would have insufficient energy to overcome the friction at the
dead space of the adjacent bar, which is always greater than the

wall friction.

If we consider the velocity distribution behind Grid I, .ff;f
plotted versus y for various values of X, (Figure 9), then
we see that the maximum velocity is on the line y = 0 for all Xq-
Here, therefore, we are dealing with the desired "stable" case

for the application as a smoothing grid.

From Figure 10 we can determine the deviations of the measured
total pressure from the true total pressure and from pressure a.
We see that these become steadily smaller with increasing Xx;.

For x; = 69.2 cm the measured and true total pressures are
identical. At small Xy the ambiguity of the pressures a,
which we have already mentioned, appears. We see an example of

this in Figure 1l0a. These measurements were made at a distance of

X; = 11 cm from the grid.
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A dimensionless curve of pressure versus Xl/h was plotted

for ¥ = 0, w2l , and 4 (Figure 11). The mean dynamic pressure
was 6.12 kg/mz.
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Fiéﬁ?é—ii. Pressure curve behind Grid I for F=mglﬂ

The situation is different if 1} is increased beyond the

stability limit, as is the case for Grid II. Weféiﬁiéfgonce see

the instability in the velocity profiles (Figure 12a). Of the

four jets passing the three grid bars, each pair unites, remaining
pargllgl_go the channel walls. At the center, then, i. e., for

5% =@ —3 a region with reverse flow is observed out to a distance
of X) = 14 cm from the grid. To be sure, no measurements are
plotted there, because at these points of low velocity the pressures
a, b, and ¢ often differ only by less than 1 mm alcohol, which

does not provide sufficiently accurate readings with the instability

of the entire flow.

With a small shift of the center grid bar (sée also Figure 8)
both the two outer jets remain at the channel walls, whilefEEEi:f\ﬂ
two central ones combine (Figure 12b). Here, again, as in the '
following figures, wei;gggfiﬁention the gaps in the individual
velocity profiles, which are based on the inaccuracy of the
pressure readings mentioned above. To improve the clarity, the

negative velocities are shaded in the figures.

15
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combines either with the two upper jets (Figure l4a) or with the two
lower ones SE}&EE? 14b). The latter case occurs if the grid rod
specified above is moved more than 0.4 mm in the X1 direction.

the dead space in the center extgnds particularly far in the flow.

Here

Figure l6a and Figure 16b show the matching curves for the

static pressure.
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Figure 16 a and b. Curves for, the static pressure with Grid III.

Mechanical
one or the other position of the jets being preferred;

inacuracies in the grid structure are the cause for
but if these
inaccuracies are too small, then even stopping and restarting the
motor can produce a different position of the jets. As mentioned
previously, this phenomenon, which is undesirable for the measure-

ment, was avoided by small intentional shifts of one grid bar.

The mean dynamic pressure was 6.10 kg/m2 for Grid II and
5.26 kg/m2 for Grid III.
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II. Theoretical Part

1. The Hydrodynamic Statement

The instability we have observed for the jets passing through
our grid occurs if the ratio 4, which we have defined on page 1,
exceeds a value between 0.37 and 0.46. Now we shall attempt to
confirm this instability analytically. For this purpose we make use
of the method of small oscillations in which we superimpose upon a
basic flow parallel to the x-axis with the flow function

A(2)

v =on—}'-. = .sinay (1)
a perturbing flow with the flow function

We presume the decay law for the amplitude A(x) to be already known
in the following. Now assume that ’

B< |

‘that is

’ﬁévé“:%%. Let the displacement experienced by the basic flow, ] ;

due to the perturbing flow, v}, be €,s, and let ¥ be neglected
in relation to x as a first approximation. Then we can write

o (3)

for the Vélocity component v' of the perturbing flow, considered

to be steady, if we neglect small terms in forming the material =~

many jets of the basic flow impinge on one perturbing’® =~

(9) To be sure, in the numerical examples we have set B = %a; 1i. e.

two jets on one perturbing wave, so that not much more than a
qualitative agreement by the calculation can be expected.

’
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derivatives and average across the jets. On the other hand, it is
also true for the velocity components of the perturbing flow that

' =¥ v'=—?-‘—’:.
¢y’ éx (4)
Correspondingly, according to (3),
a9 = [ de=—F (5)

(The arbitrary function of y, which properly must also be added to
this, can be set equal to zero by appropriate definition of the
points from which the displacement M is calculated).

It is also desirable to represent the total flow by a flow
function. As the jets are directed to the side by the perturbing
flow, u', v', according to (1), then we can write for this

p=Up(y—n)+ Ai’) sina (y—1). _ (6)
/ 307
Here, according to (5), the flow function for the perturbing flow
is expressed by the term=—UyﬁL The velocities are determined from (6):

- o), |

cy . )
o= — 20— A g (y— ) + A(x) L cosa(y—m) +Us G- | (7)

By averaging across the jets we obtain

ay 1’ 05y

which agrees with Equations (3) to (5).
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2. Approximate Solution of the Problem

As a strict solution of the problem formulated in the preceding
cannot be carried out, the hydrodynamic dlfferentlai equatlons were

P )}

replaced by those obtained through averaging the Ve1001t1es~ech§§‘
the individual jets. The effect of turbulence is expressed by the
apparent viscosity e¢|. Let us assume that this is a function of x

alone, and, therefore, that it is independent of y. For the normal

e i
ST

turbulence case, one can write, according to a statement by § {
Prandtl (10): S -

(8)
If we insert into this
u=2A( )COS~—'Z-’i und l’=’_21';', (d)
then with
T als .
1=2h ) ()
obviously _
e=olA(x)| (9)

According to experiments by Cordes (ll), 1 =0.103 @, giving
T = 0.066 h. (See the discussion on pages 22 - 24 for an expression
for § which mofe—suitable for large x.)

Thus, the differential equations for the average motions become

L+ 4 [ (e ) o S 25 ). (10)
%fiﬁh)+—‘()*‘;Z§=’%k;((%% ??”+2553}‘ (11)

KII)See also .Footnote 2,~gg5#§9§J
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The terms containing .¢] on the right side of Equations (10) and
(11) appear because instead of the ordinarily used expression, £ oufey)

| we have introduced the complete stress tensor €&(Fw+wl)
m'_bs the components u and v. Thus we obtained for the shear
stress and the normal stresses the expressions

Tsy _C(C“ +ﬂ‘)»

oy
cu

Or =282, (12)

—28%
Now, with our expressions for u and v from (7) we enter
our Eépg;ypns (10) and (11). In doing so, we note that 'nm(x3)
is considered to be a small value, and that as a first approximation
we may neglect terms of higher order. In averaging across the region
lh=2nja) , which is assumed to be small, the quantities dependent

on the perturbing flow ( 1) are considered constant. Likewise, we

can write cos *7~t] and sin @m7n~an] , so that we can set
sina (y—wy) =sinay— oy cosay,
cosa (y—uy)=oanysinay+ cosay

All terms in the averages of (10) and (11) which contain a sine,
cosine, or the product of both trigomnometric functions as a factor
are, therefore, replaced by their average value of zero. Only the
terms with sin2 dyA’énﬁicosz ay make non-zero contriﬂutions.
Considering these rules, we arrive after EBme~eo?putation at the

two equations:

A 4'_o_3'_1AA LBl & (UHﬁi_Ze'Uo) Sy tUs , 1 8p

¢y o exey) 2T T T EEey g Ve e (13)
P o IRy B R
T\ T2 G ¢ et g ey e tedy U

(strokes indicate differentiation with respect to X.)

22

. As a result,
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In order to eliminate the pressure, we differentiate (13) with
respect to y and (14) with respect to x and subtract the two
equations. The result is a fourth-order partial differential
equation for }ml(x, y):

U,
Ay +(2‘_‘1°_U’ 4 ) dy—2A A~
Uy &y |, £"Uy &2 é
T ar T g e AT A =0, | (15)

Now if we return to the statement for 7 in (5), with (2) we
obtain -

: , B
1;=——2%=— ﬂ(lj) smﬁy

(16)

After an easy calculation we obtain, using (16) and' throigh
introduction into (15) of an ordinary fourth-order differential
equation for the desired function B(x):

e (28 ol 42 & 2044
(Rt g (€2 ) |
vy 26 2 oU, B2 A2 044" 4.4’ 52 32
—B (‘ :ﬂ L :ﬂ _ 92£Ufi2 +__;(l._~+ A )+B(ﬂ4 "nsun b + £ Eﬁ )ZO'I (17)

Now, before proceeding with our calculation, we must make some
introductory comments on the decay law of<KKXI£3

(12)

turbulence statement of (8), have found that A(x) decays as Vx.

They have also confirmed this by measurements. But from measurements

Gran Olsson and Cordes (13), according to the ordinary

by Dryden and others, it appears that for large values of x/h
(h = grid division), A(x) decays in proportion to (x/h)™", with
n>1. If the grid bars become wider and, thus, the turbulence
prdduced by the grid becomes stronger, this is the case even for
small x/h, as shown by.the present werk. From measurements by

Dryden, Prandtl has derived an n in the vicinity of 4.5 for this

(12) R. Gran Olsson, Z. Angew. Math. Mech. 16(1936), page 257.
(13) See footnote 2, page 2.
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investigated case. According to the current concept, the state of
turbulence behind the grid more and more approaches the so-called
"isotropic" turbulence, falling off with time, with increasing
distance from the grid. Here the old statement for the apparent
viscosity _¢ in (8) is no longer valid, because du/dy vanishes
there. Thefefore, Prandtl (14) developed an expanded statement,
according to which finite values of the turbulent agitation remain
even where du/dy is already zero, as detailed experimental
observations require. This statement contains the comment that
the transverse gradient of the mean velocity u which was present

at a certain time t' contributes to the instantaneous state of

turbulence at a later time t. With a;%hgéiigtﬁbss term matched to
this concept, the larger ﬁalqggrgf n required by observation could

also be obtained theoretically.

7)-1%;; 77'7%

5/”&'[; /A
Cifer B, o
6‘/’?’"; 1]' -

4
&5

Figure 17. Dependence of 2*:?%3# on g, (obtained from the

velocity profiles of Figures 9 and 12b). The dashed
lines a, b and ¢ represent the formulas (20), (21),

and (20a)]

(14)
USA, 1938.
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Using this statement, one obtains, instead of (9), the following

expression for g :
=03 x| ‘ (]_8)

(with  a=2a% , where x is not the distance from the grid, but
from an initial point situated upstream from the grid). The exponent
of n can be determined practically by plotting the value of the

| E{of the measurement

ratioW%Jkau—4%%=q%ﬂﬂ§Wersus-the.distance.x

-

cross section from the plane of the grid, or better, the ratio xl/h.

As the theory deveoped above is to be applied to the special
case occurring in the experiments, where the two jets combine
beyond a distance h and so form new jets from the distance Z2h,
here we must set B= %a. Fgr further calculation it proves expedient
to introduce a dimensionless variable &i=u8] which, with B= %a and

w=2a/k| , gives

Trp
M
]
1:1
>
———

(19)

Figure 17 shows a plot of # in dependence on &), based on the /310
measurements for Grid I given in Figure 9. The first part of the
curve can be reproduced by a straight line with the equation

‘1;=L§_737(x1 + 0,407 %) =0,598 (£, + 1,278)} (20)

In the following, we set £ +1,278=§ ; therefore, U=Oﬁmﬁl. This line

is marked a in Figure 17.

For 6>7 , A(x) decreases approximately with (xq + e')_4,

with ¢~H , giving o
7=0,00064 (&, + 3,14)* |

(21)

For simplicity, we write the formula
: H+314=1
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in the following. In Figure 17, Formula (21) is marked as b.

For Grid II there is, from the ;i;st/ﬁeasuring cross sections,
a strong amplitude of the oscillation B(x), which is superimposed
on the original amplitude A(x), but which has twice the wavelength.
The course of the amplitude A(x) is determined here_in such a way
that the velocity profile of Figure 12b is analyzed into its A
component and B component. The curve for the two components is also
shown in Figure 17. Corresponding to the doubled wavelength of B,
-§F=1QGH is plotted instead of ¥)| for these values. As it appears,
the A curve is strongly curved from the beginning due to the increased
turbulence related to the B amplitude. In order to apply our
formula, at the first\ A point, in place of (20) a linear function
is assumed, which runs approximately tangential to this curve. The
formula used for this is

1=0,31(§ +1,0) |
(20a)

(the approximations which led to the selected zéro point shift can
be passed over here). Formula (21) can be used with sufficient
accuracy for the value of 7] , if &\ in it is replaced by & .

Now we return to Equation (17) and make it dimensionless by
defining the following quantities:

1p=y,
§A(x) __ 2
LB l (22)
With these dimensionless quantities, (17) transforms into
: +6 5 (5 , 2(;!—()) _
~(' —fg-. P+- i =o. l (23)
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v
Here we must note that this’ differential equation is valid only
in the range within which A(x) is proportional to x 1. Direct solution
is possible only through the series expression

42

D(E)=Na, &+
7o | (24)

It

Unfortunately the convergence region of the series arising in the

solution ends in the vicinity of the grid plane, just'_ggvtheJEQigt

beyond which we begin to be interested in the course of pE). An / 311
approximate discussion of the properties of the solution appears on

page 29.

In order to see how the solutions behave for larger values of §&
where A is proportional to & , we introduce into Equation (23)

instead of ¥y

p= e 5] (25)

Here
(26)

The extended statement for ¢ is taken from (18) so that, after
introducing the specified quantities, we can now obtain from (17):

. DIIII(E)__])III (E)

—,

4 .11(211!-1‘—1)5 + - __2_ 2122-',:0. I (27)

As can be seen from the pattern of the coefficients, solution of
this differential equation by means of an égympt?tic series of the
form ‘ _

D=0 ()

r=0

is not possible. By mneglecting the terms in the individual coeffic-
ients which become small for large | it was possible to find two

27
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particular integrals of the differential equation simplified in
this way:

From the second-order differential equation obtained in this way,
the two missing solutions can then be developed after further
reasonable approximations.

But in order to link up with the solutions obtained from
differential equation (23), we must not undertake the approximations
just mentioned, becaude the neglected terms are not small at all in
this range. We can see this immediately if we comsider the values for
vand Yy from the table below. '

So as to be able first to study the behavior of our solutions
by means of a simpler example, we write, temporarily,

: L
: e:gk%"— =Ccons EI

Then, instead of (23), we obtain

D"(§) = D" (€)= 2D + D) § TP =0

(28)
With
D (&) =eet
we obtain, for the roots 6 of the principal equation
: “1251};‘*'] Tik—,-{ﬂk;;:}—k—{'---'i, . Ge=—A, .
o3 =+1, 042211;*]/'4—1’;,'+1&'~k—-". (29)

;AéﬁﬁE\*is supposed to be much less than umity, o) -becomes large
and positive, land %| small and negative, while ¢\ and o are of mormal
magnitude.
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It is well known that the potential flows, which one knows from / 312
the frictionless liquid, belong to the solutions of the Navier-Stokes
differential equations. The solutions built up with o, and "o in our
case are of that type. The term D,(f)decays with increasingﬁig I&ke
a disturbance produced by an upstream barrier which is periodic with
ys while Dy() is explained by the diversion of the basic flow

before a downstream barrier which is periodic with y. With ', we
obtain the solu§i§§:§§§pg“?onsidered for our flow with lower apparent
viscosity. As we can see from the binomial expansion of 9 , it
decays slowly with g . The term QMQX increases strongly ahead of

the downstream barrier. Thus, it is suited to represent the asymptotic
behavior of the velocity changes occurring through a turbulent boundary

layer before a barrier as it approaches the barrier.

Now, in order to determine more accurately the properties of
the solution of (23), as the strict solution is not attainable,
the follgwing expedient was taken: We investigated the approximation
obtained if the whole region is dissected into a number of segments,
so that the coefficients of (23) are inserted for each segment
(from &) to £ ) with the constant value which they have in the center

of the segment.

First, the following table will explain the numbers 'y, 678

and n obtained from the experiment:

Grid I Grid II
‘ y o 1 ‘ =
Y 0,210 0,210°
) 1,671 3,226
¥ 1,000 —
6 2,441-10% — (30)
4,0 —

-
=
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Now, using the values of y and & from (30), the coefficients
of the differential equation (23) are calculated for three definite
values of &, so that we obtain a differential equation with con-
stant coefficients for each fi(i=a, QM the solutions of which also
satisfy (23) in the near vicinity of the & concerned. The four
resulting constants are left undefined, as a quantitative comparison
with experiment cannot be performed. Now there appear the following

differential equations for Grid I:

£OTk, =2132: D" (§)— 8,879D""(£) +1,949D"(2) + 6,412D'(8)— zo;;D(E)’:'o,l
fsﬂ&—Bmle%) 10,900 D""*(£) —0,256 D"(£) 410,178 D'(£) — 0,360 D(£) =0,
fdja—mﬁo.D”%S —13,635 D" (£)—1,020D"(£) +13,330 D' (§) - 038Dﬁ)t)1 (31)

The corresponding differential equations for Grid II are:

w_LOTE, =1,854: D""(E)—/959D"'(5)+7,520D"()+0727D() 7356 D (%) =
j_for)é =2,924: D""(£)—7,627D""(§) +1,827D"(§) +5,784D'(§)—2,360D (¢) = 0 (32)
! fOP]& =4,002: D'"'(§)—8,326D*"(&) +0,043 D"*(&) +7,607 D' () — 0,93D(5) 0]

In the same way, for Grid I, we derive three differential

equations from (27):

TLOT o= 11,14 D(§)~11,377D"(E)—1,902D"(3) + 11,344 D'(5) +0,934 D(F) = |
v LOT) & =12,64: D"""(E)—12,822D""(§)—1,957 D" (§) +12,8“D'(5)+0,98SD(§)=‘0 (33)
"ETOTI = 14,14 D’-’”(E')—14,292D"'(£') 19/8D"(5 +14,288D'(§) 40,998 D(5) = 0. ]

/ 313

All the equations are solved with the statement

D(§) =Ces

or Equations (33) with
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The principal equations are solved for the roots @} to 9%| by Graeff's
method. Their values are in the following table, which also includes
the values of ¢ to ¢/ for comparison with those from (28), as the

former transform into the latter.

L o e e e e

| © Gridh L (34a)
& + 8558 | —0853 | +0827° | +0347 '
& +10,837 | —0,955 | +0,982 + 0,035
& + 13,628 ] —0,971 { +0,996 . .| —0,018 )
& +11,436 | —0997 I +0,9995 | —0,0815 .
& +12,896 | —0,9977 © +09997 | —0,076
& +14,360 | —09979  +0.9999 | —o.070

Gridn |

&a +6,875 | —0,750 | 0,917 %+ 0,768i I
£ +7.272 | —0893 | +0783 | <0464 l (34b)
§e +8211 | —0951 | +0,960 +0,106

According to the considerations connected with Equation (29),
~the sign of the root ¢|(or its real portion) must be considered
decisive for stability or instability. Our calculations, from
which not much more than a qualitative agreement with observations
could be expected according to the comment in the footnote on

page 19, accordingly show a moderate instability for the positions
near the grid even for Grid I, but stability in the later course.
Comparison with Grid II shows a distinct increase of the instability
with Grid II. Recalculation of the state of Grid II after the
transition to the doubled perturbing wavelength may be unnecessary,
as numerical values of W are obtained for the turbulent exchange.

I

by n according to Flgure‘%7. They differ only

on replacement of &
slightly from those of Grid I according to (21). After the alteration,
therefore, one would calculate for the . state—of-Grid II flow a
stability corresponding to that given for the positions %l to ¢

for Grid I.
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As for instability on a short segmént of the path, with sub-
sequent stability, it should be noted that very small original
perturbations can grow to dangerous size only on a long path.

The overturning of the flow is, therefore, quite significantly
supported by any sort of‘Qnggﬁg§§s in the structure of the grid.
When the experiments were being carried out, it actually appeared
that Grid III (see Figure 8), for which A has the greatest value
of the grids studied, is the most sensitive tq mechanical

inaccuracies in the grid structure. When using a shodthing grid|

then, it is desirable to design it so that the grid density A
does not exceed the value specified on page 2.

Summary

In order to explain the irregularities occurring in the flow
behind smoothing grids, the flow was investigated behlind three grids
with different apertures. In order to obtain useful velocity measure-
ments in this particularly severly turbulent flow, a probe was de-
veloped which‘gpﬁ{@;?e calibrated in a free jet mixing zone. In order

to measure the static pressure in a flow for which the turbulence / 314

is considerably stronger than that in a free jet mixing zone,
calibration curves were derived to determine the static pressure, the
total pressure, and the dynamic pressure in their dependence on a
turbulence measure which the probe also provides. For each measure-
ment point, three pressure readings are needed at different angles
of rotation for the probe.

For the grids studied it was found that the instability observed
occurs more easily the more closely together the grid rods are built,
with their widths remaining the same.

This phenomenon was followed up theoretically by application of
the hydrodynamic equations of motion produced by averaging the
_velocities across the individual jets. The result confirmed the
instability observéa;%ith Grid II and showed that even the flow from
Grid I probably has an unstable region, which would have appeared
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with greater displacement of a grid bar.

The experiment was performed at the Kaiser Wilhelm Institute

for Flow Research at{Géttingen.

Translated for National Aeronautics and Space Administration under
contract No. NASw 2483, by SCITRAN, P. 0. Box 5456, Santa Barbara,
California, 93108

33



